Author
Abstract
People flow statistics have important research value in areas such as intelligent security. Accurately identifying the occluded target in video surveillance is a difficulty in the video surveillance system. Now the popular moving object tracking algorithm is based on detection and cannot accurately determine the relationship between overlapping. For the statistics of people flow in the video surveillance system, a dense crowd flow antiocclusion statistical algorithm considering video continuity is proposed. This study focuses on the improved faster R-CN algorithm for small target detection, moving target correlation matching, and two-way human flow intelligent statistics. According to the small-scale characteristics of the human head target, the faster R-CNNV network structure is adaptively improved. The shallow images features are used to improve the feature extraction ability of the network for small targets. The occlusion relationship function is constructed to clearly express the relationship between the occlusion targets, and it is incorporated into the framework of the tracking algorithm. A tracking algorithm based on trajectory prediction is used to follow moving targets in real time, and a two-way human flow intelligent statistical method is used to accomplish human flow. To prove the strength of the method, tests are managed in scenes with different degrees of density, and the results show that the improved target detection algorithm improves the average accuracy of 7.31% and 10.71% on the Brainwash test set and Pets2009 benchmark data set, respectively, compared with the original algorithm. The F-value of the comprehensive evaluation index of video stream of people intelligent statistical method in various scenes can reach more than 90%. Compared with the excellent methods SSD sorting algorithm and yolov3 deepsort algorithm in recent years, its F value is increased by 1.14%–3.04%.
Suggested Citation
Huiqiang Tao & Naeem Jan, 2022.
"Statistical Calculation of Dense Crowd Flow Antiobscuring Method considering Video Continuity,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-9, March.
Handle:
RePEc:hin:jnlmpe:6185986
DOI: 10.1155/2022/6185986
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6185986. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.