Author
Listed:
- Huiqun Jia
- Zhonghui Wei
- Xin He
- You Lv
- Dinglong He
- Muyu Li
Abstract
The detection and recognition of arrow markings is a basic task of autonomous driving. To achieve all-day detection and recognition of arrow markings in complex environment, we propose a hybrid model by exploiting the advantages of biologically visual perceptual model and discriminative model. Firstly, the arrow markings are extracted from the complex background in the region of interest (ROI) by the biologically visual perceptual model using the frequency-tuned (FT) algorithm. Then candidates for road markings are detected as maximally stable extremal regions (MSER). In recognition stage, biologically visual perceptual model calculates the sparse solution of arrow markings using sparse learning theory. Finally, discriminative model uses the Adaptive Boosting (AdaBoost) classifier trained by sparse solution to classify arrow markings. Experimental results show that the hybrid model achieves detection and recognition of arrow markings in complex road conditions with the precision, recall, and F-measure being 0.966, 0.88, and 0.92, respectively. The hybrid model is robust and has some advantages compared with other state-of-the-art methods. The hybrid model proposed in this paper has important theoretical significance and practical value for all-day detection and recognition in complex environment.
Suggested Citation
Huiqun Jia & Zhonghui Wei & Xin He & You Lv & Dinglong He & Muyu Li, 2018.
"Biologically Visual Perceptual Model and Discriminative Model for Road Markings Detection and Recognition,"
Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-11, June.
Handle:
RePEc:hin:jnlmpe:6062081
DOI: 10.1155/2018/6062081
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6062081. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.