Author
Listed:
- Chaojun Wu
- Qi Zhang
- Zhang Liu
- Ningning Yang
Abstract
This paper proposed a novel fractional-order Chua’s memristive circuit. Firstly, a fractional-order mathematical model of a diode bridge generalized memristor with RLC filter cascade is established, and simulations verify that the fractional-order generalized memristor satisfies the basic characteristics of a memristor. Secondly, the capacitor and inductor in Chua’s chaotic circuit are extended to the fractional order, and the fractional-order generalized memristor is used instead of Chua’s diode to establish the fractional-order mathematical model of chaotic circuit based on RLC generalized memristor. By studying the stability analysis of the equilibrium point and the influence of the circuit parameters on the system dynamics, the dynamic characteristics of the proposed chaotic circuit are theoretically analyzed and numerically simulated. The results show that the proposed fractional-order memristive chaotic circuit has gone through three states: period, bifurcation, and chaos, and a narrow period window appears in the chaotic region. Finally, the equivalent circuit method is adopted in PSpice to realize the construction of the fractional-order capacitance and inductance, and the simulation of the fractional-order memristive chaotic circuit is completed. The results further verify the correctness of the theoretical analysis.
Suggested Citation
Chaojun Wu & Qi Zhang & Zhang Liu & Ningning Yang, 2021.
"Dynamic Behaviors Analysis of a Novel Fractional-Order Chua’s Memristive Circuit,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, July.
Handle:
RePEc:hin:jnlmpe:5896353
DOI: 10.1155/2021/5896353
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5896353. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.