IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5861414.html
   My bibliography  Save this article

Identifying Recurring Bottlenecks on Urban Expressway Using a Fusion Method Based on Loop Detector Data

Author

Listed:
  • Li Tang
  • Yifeng Wang
  • Xuejun Zhang

Abstract

The accurate identification of recurrent bottlenecks has been an important assumption of many studies on traffic congestion analysis and management. As one of the most widely used traffic detection devices, loop detectors can provide reliable multidimensional data for traffic bottleneck identification. Although great efforts have been put on developing bottleneck identification methods based on loop detector data, the existing studies are less informative with respect to providing accurate position of the bottlenecks and discussing the algorithm efficiency when facing with large amount of real-time data. This paper aims at improving the quality of bottleneck identification as well as avoiding excessive data processing burden. A fusion method of loop detector data with different collection cycles is proposed. It firstly determines the occurrence and the approximate locations of bottlenecks using large cycle data considering its high accuracy in determining bottlenecks occurrence. Then, the small cycle data are used to determine the accurate location and the duration time of the bottlenecks. A case study is introduced to verify the proposed method. A large set of 30 s raw loop detector data from a selected urban expressway segment in California is used. Also, the identification result is compared with the classical transformed cumulative curves method. The results show that the fusion method is valid with bottleneck identification and location positioning. We finally conclude by discussing some future improvements and potential applications.

Suggested Citation

  • Li Tang & Yifeng Wang & Xuejun Zhang, 2019. "Identifying Recurring Bottlenecks on Urban Expressway Using a Fusion Method Based on Loop Detector Data," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-9, August.
  • Handle: RePEc:hin:jnlmpe:5861414
    DOI: 10.1155/2019/5861414
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/5861414.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/5861414.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/5861414?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuan Fang & Tamás Péter & Tamás Tettamanti, 2023. "Variable Speed Limit Control for the Motorway–Urban Merging Bottlenecks Using Multi-Agent Reinforcement Learning," Sustainability, MDPI, vol. 15(14), pages 1-15, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5861414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.