Author
Listed:
- Xian Wei
- Feng Gao
- Yan Li
- Dongya Zhang
Abstract
Both multicollinearity and utilization deficiency of temperature sensors affect the robustness and the prediction precision of traditional thermal error prediction models. To address the problem, a thermal error prediction model without temperature sensors is proposed. Firstly, the paper analyzes the temperature field and thermal deformation mechanisms of the spindle of a CNC gear grinding machine in accordance with the parameters, efficiencies, and structures of the machine spindle and bearing. A preliminary theoretical model is established on the basis of the mechanism analysis. Secondly, the theoretical model is corrected according to the actual operation parameters of the machine. Thirdly, verification experiments are carried out on machine tools of the same type. It is found that the corrected model has higher precision in predicting thermal errors at the same rotational velocity. The standard deviation and the maximum residual error are reduced by at least 39% and 48% separately. The prediction precision decreases with the increase in prediction range when predicting thermal errors at different rotational velocities. The model has high prediction precision and strong robustness in the case of reasonable prediction range and classified prediction. In a word, prediction precision and robustness of the model without temperature sensors can be effectively ensured by reasonably determining the prediction range and practicing classified prediction and compensation for thermal errors at different rotational velocities. The model established can be applied to machine tools that have difficulties in arranging sensors or those whose sensors are significantly disturbed.
Suggested Citation
Xian Wei & Feng Gao & Yan Li & Dongya Zhang, 2018.
"Thermal Errors Classification Compensation without Sensor for CNC Machine Tools,"
Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-11, August.
Handle:
RePEc:hin:jnlmpe:5752932
DOI: 10.1155/2018/5752932
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5752932. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.