Author
Listed:
- Tiezheng Guo
- Jie Wang
- Zhiming Wang
- Wei Chen
- Guojun Chen
- Shishi Zhang
- Amandeep Kaur
Abstract
For the path planning and obstacle avoidance problem of mobile robots in unknown surroundings, a novel improved artificial potential field (IAPF) model was proposed in this study. In order to overcome the shortages of low efficiency, local optimization trap, and unreachable target in the classical artificial potential field (APF) method, the new adaptive step length adjustment strategy was proposed in IAPF, which improved the path planning and obstacle avoidance efficiency. A new triangular navigation method was designed to solve the local optimization trap in joint force zero condition for a variety of path planning. In order to solve the target unreachable problem, a new target attraction model was established based on the distance of obstacle to improve convergence rate, and the new method was designed such as adding the aim factor to optimize the rejection force function and so on. The two methods of IAPF and APF are compared using MATLAB simulation, the average path planning efficiency of IAPF is increased by 42.8% compared with APF, the average path length is reduced by 8.6%, and the average target convergence rate is increased by 26.1%. Finally, the physical test of the mobile robot verified the effectiveness and accuracy of IAPF.
Suggested Citation
Tiezheng Guo & Jie Wang & Zhiming Wang & Wei Chen & Guojun Chen & Shishi Zhang & Amandeep Kaur, 2022.
"Research on Path Planning of Mobile Robot with a Novel Improved Artificial Potential Field Algorithm,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-13, September.
Handle:
RePEc:hin:jnlmpe:5692350
DOI: 10.1155/2022/5692350
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5692350. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.