IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5683539.html
   My bibliography  Save this article

Automatic Variable Selection for Partially Linear Functional Additive Model and Its Application to the Tecator Data Set

Author

Listed:
  • Yuping Hu
  • Sanying Feng
  • Liugen Xue

Abstract

We introduce a new partially linear functional additive model, and we consider the problem of variable selection for this model. Based on the functional principal components method and the centered spline basis function approximation, a new variable selection procedure is proposed by using the smooth-threshold estimating equation (SEE). The proposed procedure automatically eliminates inactive predictors by setting the corresponding parameters to be zero and simultaneously estimates the nonzero regression coefficients by solving the SEE. The approach avoids the convex optimization problem, and it is flexible and easy to implement. We establish the asymptotic properties of the resulting estimators under some regularity conditions. We apply the proposed procedure to analyze a real data set: the Tecator data set.

Suggested Citation

  • Yuping Hu & Sanying Feng & Liugen Xue, 2018. "Automatic Variable Selection for Partially Linear Functional Additive Model and Its Application to the Tecator Data Set," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-9, August.
  • Handle: RePEc:hin:jnlmpe:5683539
    DOI: 10.1155/2018/5683539
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2018/5683539.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2018/5683539.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/5683539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5683539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.