IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5659197.html
   My bibliography  Save this article

Flood Risk Zoning by Using 2D Hydrodynamic Modeling: A Case Study in Jinan City

Author

Listed:
  • Tao Cheng
  • Zongxue Xu
  • Siyang Hong
  • Sulin Song

Abstract

Climate change and rapid urbanization have aggravated the rainstorm flood in Jinan City during the past decades. Jinan City is higher in the south and lower in the north with a steep slope inclined from the south to the north. This results in high-velocity overland flow and deep waterlogging, which poses a tremendous threat to pedestrians and vehicles. Therefore, it is vital to investigate the rainstorm flood and further perform flood risk zoning. This study is carried out in the “Sponge City Construction” pilot area of Jinan City, where the InfoWorks ICM 2D hydrodynamic model is utilized for simulating historical and designed rainfall events. The model is validated with observations, and the causes for errors are analyzed. The simulated water depth and flow velocity are recorded for flood risk zoning. The result shows that the InfoWorks ICM 2D model performed well. The flood risk zoning result shows that rainfalls with larger recurrence intervals generate larger areas of moderate to extreme risk. Meanwhile, the zoning results for the two historical rainfalls show that flood with a higher maximum hourly rainfall intensity is more serious. This study will provide scientific support for the flood control and disaster reduction in Jinan City.

Suggested Citation

  • Tao Cheng & Zongxue Xu & Siyang Hong & Sulin Song, 2017. "Flood Risk Zoning by Using 2D Hydrodynamic Modeling: A Case Study in Jinan City," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-8, October.
  • Handle: RePEc:hin:jnlmpe:5659197
    DOI: 10.1155/2017/5659197
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2017/5659197.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2017/5659197.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/5659197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongfa Wang & Xinjian Guan & Yu Meng & Zening Wu & Kun Wang & Huiliang Wang, 2023. "Coupling Time and Non-Time Series Models to Simulate the Flood Depth at Urban Flooded Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1275-1295, February.
    2. Tong Xu & Zhiqiang Xie & Fei Zhao & Yimin Li & Shouquan Yang & Yangbin Zhang & Siqiao Yin & Shi Chen & Xuan Li & Sidong Zhao & Zhiqun Hou, 2022. "Permeability control and flood risk assessment of urban underlying surface: a case study of Runcheng south area, Kunming," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 661-686, March.
    3. Aung Khaing Min & Takashi Tashiro, 2024. "Assessment of pluvial flood events based on monitoring and modeling of an old urban storm drainage in the city center of Yangon, Myanmar," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8871-8892, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5659197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.