IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/563912.html
   My bibliography  Save this article

An Agent-Based Computational Model for China’s Stock Market and Stock Index Futures Market

Author

Listed:
  • Hai-Chuan Xu
  • Wei Zhang
  • Xiong Xiong
  • Wei-Xing Zhou

Abstract

This study presents an agent-based computational cross market model for Chinese equity market structure, which includes both stocks and CSI 300 index futures. In this model, we design several stocks and one index future to simulate this structure. This model allows heterogeneous investors to make investment decisions with restrictions including wealth, market trading mechanism, and risk management. Investors’ demands and order submissions are endogenously determined. Our model successfully reproduces several key features of the Chinese financial markets including spot-futures basis distribution, bid-ask spread distribution, volatility clustering, and long memory in absolute returns. Our model can be applied in cross market risk control, market mechanism design, and arbitrage strategies analysis.

Suggested Citation

  • Hai-Chuan Xu & Wei Zhang & Xiong Xiong & Wei-Xing Zhou, 2014. "An Agent-Based Computational Model for China’s Stock Market and Stock Index Futures Market," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-10, April.
  • Handle: RePEc:hin:jnlmpe:563912
    DOI: 10.1155/2014/563912
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2014/563912.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2014/563912.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/563912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    2. Evangelos Drimbetas & Nikolaos Sariannidis & Nicos Porfiris, 2007. "The effect of derivatives trading on volatility of the underlying asset: evidence from the Greek stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 139-148.
    3. Rittler, Daniel, 2012. "Price discovery and volatility spillovers in the European Union emissions trading scheme: A high-frequency analysis," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 774-785.
    4. Cumming, Douglas & Johan, Sofia & Li, Dan, 2011. "Exchange trading rules and stock market liquidity," Journal of Financial Economics, Elsevier, vol. 99(3), pages 651-671, March.
    5. Sabrina Ecca & Michele Marchesi & Alessio Setzu, 2008. "Modeling and Simulation of an Artificial Stock Option Market," Computational Economics, Springer;Society for Computational Economics, vol. 32(1), pages 37-53, September.
    6. Westerhoff Frank H., 2008. "The Use of Agent-Based Financial Market Models to Test the Effectiveness of Regulatory Policies," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 195-227, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao-Feng Gu & Xiong Xiong & Hai-Chuan Xu & Wei Zhang & Yongjie Zhang & Wei Chen & Wei-Xing Zhou, 2021. "An empirical behavioral order-driven model with price limit rules," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
    2. Chia-Hsuan Yeh & Chun-Yi Yang, 2013. "Do price limits hurt the market?," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 125-153, April.
    3. Johann Lussange & Boris Gutkin, 2023. "Order book regulatory impact on stock market quality: a multi-agent reinforcement learning perspective," Papers 2302.04184, arXiv.org.
    4. Gao-Feng Gu & Xiong Xiong & Hai-Chuan Xu & Wei Zhang & Yongjie Zhang & Wei Chen & Wei-Xing Zhou, 2021. "An empirical behavioral order-driven model with price limit rules," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    5. Alexandru Mandes, 2020. "Impact of Electronic Liquidity Providers Within a High-Frequency Agent-Based Modeling Framework," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 407-450, February.
    6. Daniel Fricke & Thomas Lux, 2015. "The effects of a financial transaction tax in an artificial financial market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(1), pages 119-150, April.
    7. Luca Riccetti & Alberto Russo & Mauro Gallegati, 2015. "An agent based decentralized matching macroeconomic model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 305-332, October.
    8. Dimitrios D. Thomakos & Michail S. Koubouros, 2011. "The Role of Realised Volatility in the Athens Stock Exchange," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 87-124, March - J.
    9. Mizrach, Bruce & Otsubo, Yoichi, 2014. "The market microstructure of the European climate exchange," Journal of Banking & Finance, Elsevier, vol. 39(C), pages 107-116.
    10. Cowan, Arnold R. & Salotti, Valentina, 2020. "Anti-selective disclosure regulation and analyst forecast accuracy and usefulness," Journal of Corporate Finance, Elsevier, vol. 64(C).
    11. Poledna, Sebastian & Thurner, Stefan & Farmer, J. Doyne & Geanakoplos, John, 2014. "Leverage-induced systemic risk under Basle II and other credit risk policies," Journal of Banking & Finance, Elsevier, vol. 42(C), pages 199-212.
    12. Scheffknecht, Lukas & Geiger, Felix, 2011. "A behavioral macroeconomic model with endogenous boom-bust cycles and leverage dynamcis," FZID Discussion Papers 37-2011, University of Hohenheim, Center for Research on Innovation and Services (FZID).
    13. Baumöhl, Eduard & Iwasaki, Ichiro & Kočenda, Evžen, 2019. "Institutions and determinants of firm survival in European emerging markets," Journal of Corporate Finance, Elsevier, vol. 58(C), pages 431-453.
    14. Fan, Ying & Jia, Jun-Jun & Wang, Xin & Xu, Jin-Hua, 2017. "What policy adjustments in the EU ETS truly affected the carbon prices?," Energy Policy, Elsevier, vol. 103(C), pages 145-164.
    15. Khushboo Aggarwal & Mithilesh Kumar Jha, 2023. "Stock returns seasonality in emerging asian markets," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 30(1), pages 109-130, March.
    16. Aghanya, Daniel & Agarwal, Vineet & Poshakwale, Sunil, 2020. "Market in Financial Instruments Directive (MiFID), stock price informativeness and liquidity," Journal of Banking & Finance, Elsevier, vol. 113(C).
    17. Cumming, Douglas & Dannhauser, Robert & Johan, Sofia, 2015. "Financial market misconduct and agency conflicts: A synthesis and future directions," Journal of Corporate Finance, Elsevier, vol. 34(C), pages 150-168.
    18. Yeh, Chia-Hsuan & Yang, Chun-Yi, 2010. "Examining the effectiveness of price limits in an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2089-2108, October.
    19. Vivien Lespagnol & Juliette Rouchier, 2015. "What Is the Impact of Heterogeneous Knowledge About Fundamentals on Market Liquidity and Efficiency: An ABM Approach," Lecture Notes in Economics and Mathematical Systems, in: Frédéric Amblard & Francisco J. Miguel & Adrien Blanchet & Benoit Gaudou (ed.), Advances in Artificial Economics, edition 127, pages 105-117, Springer.
    20. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:563912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.