IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5594899.html
   My bibliography  Save this article

Improvement of Support Vector Machine Algorithm in Big Data Background

Author

Listed:
  • Babacar Gaye
  • Dezheng Zhang
  • Aziguli Wulamu

Abstract

With the rapid development of the Internet and the rapid development of big data analysis technology, data mining has played a positive role in promoting industry and academia. Classification is an important problem in data mining. This paper explores the background and theory of support vector machines (SVM) in data mining classification algorithms and analyzes and summarizes the research status of various improved methods of SVM. According to the scale and characteristics of the data, different solution spaces are selected, and the solution of the dual problem is transformed into the classification surface of the original space to improve the algorithm speed. Research Process. Incorporating fuzzy membership into multicore learning, it is found that the time complexity of the original problem is determined by the dimension, and the time complexity of the dual problem is determined by the quantity, and the dimension and quantity constitute the scale of the data, so it can be based on the scale of the data Features Choose different solution spaces. The algorithm speed can be improved by transforming the solution of the dual problem into the classification surface of the original space. Conclusion . By improving the calculation rate of traditional machine learning algorithms, it is concluded that the accuracy of the fitting prediction between the predicted data and the actual value is as high as 98%, which can make the traditional machine learning algorithm meet the requirements of the big data era. It can be widely used in the context of big data.

Suggested Citation

  • Babacar Gaye & Dezheng Zhang & Aziguli Wulamu, 2021. "Improvement of Support Vector Machine Algorithm in Big Data Background," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-9, June.
  • Handle: RePEc:hin:jnlmpe:5594899
    DOI: 10.1155/2021/5594899
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5594899.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5594899.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5594899?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manish Meena & Hrishikesh Kumar & Nitin Dutt Chaturvedi & Andrey A. Kovalev & Vadim Bolshev & Dmitriy A. Kovalev & Prakash Kumar Sarangi & Aakash Chawade & Manish Singh Rajput & Vivekanand Vivekanand , 2023. "Biomass Gasification and Applied Intelligent Retrieval in Modeling," Energies, MDPI, vol. 16(18), pages 1-21, September.
    2. Yunpei Liang & Shuren Mao & Menghao Zheng & Quangui Li & Xiaoyu Li & Jianbo Li & Junjiang Zhou, 2023. "Study on the Prediction of Low-Index Coal and Gas Outburst Based on PSO-SVM," Energies, MDPI, vol. 16(16), pages 1-14, August.
    3. Joaquim Fernando Pinto da Costa & Manuel Cabral, 2022. "Statistical Methods with Applications in Data Mining: A Review of the Most Recent Works," Mathematics, MDPI, vol. 10(6), pages 1-22, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5594899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.