IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5594498.html
   My bibliography  Save this article

Acoustic Scene Classification and Visualization of Beehive Sounds Using Machine Learning Algorithms and Grad-CAM

Author

Listed:
  • Jaehoon Kim
  • Jeongkyu Oh
  • Tae-Young Heo

Abstract

Honeybees play a crucial role in the agriculture industry because they pollinate approximately 75% of all flowering crops. However, every year, the number of honeybees continues to decrease. Consequently, numerous researchers in various fields have persistently attempted to solve this problem. Acoustic scene classification, using sounds recorded from beehives, is an approach that can be applied to detect changes inside beehives. This method can be used to determine intervals that threaten a beehive. Currently, studies on sound analysis, using deep learning algorithms integrated with various data preprocessing methods that extract features from sound signals, continue to be conducted. However, there is little insight into how deep learning algorithms recognize audio scenes, as demonstrated by studies on image recognition. Therefore, in this study, we used a mel spectrogram, mel-frequency cepstral coefficients (MFCCs), and a constant-Q transform to compare the performance of conventional machine learning models to that of convolutional neural network (CNN) models. We used the support vector machine, random forest, extreme gradient boosting, shallow CNN, and VGG-13 models. Using gradient-weighted class activation mapping (Grad-CAM), we conducted an analysis to determine how the best-performing CNN model recognized audio scenes. The results showed that the VGG-13 model, using MFCCs as input data, demonstrated the best accuracy (91.93%). Additionally, based on the precision, recall, and F1-score for each class, we established that sounds other than those from bees were effectively recognized. Further, we conducted an analysis to determine the MFCCs that are important for classification through the visualizations obtained by applying Grad-CAM to the VGG-13 model. We believe that our findings can be used to develop a monitoring system that can consistently detect abnormal conditions in beehives early by classifying the sounds inside beehives.

Suggested Citation

  • Jaehoon Kim & Jeongkyu Oh & Tae-Young Heo, 2021. "Acoustic Scene Classification and Visualization of Beehive Sounds Using Machine Learning Algorithms and Grad-CAM," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, May.
  • Handle: RePEc:hin:jnlmpe:5594498
    DOI: 10.1155/2021/5594498
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5594498.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5594498.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5594498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5594498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.