Author
Abstract
With the rapid development of the information age, Internet and other technologies have been making progress, people’s fitness awareness has been gradually enhanced, and sports fitness app has emerged as the times require. This paper mainly studies the step-counting function of physical training app for teenagers based on artificial intelligence. This paper uses the modular development method to achieve the functional requirements of the system as the goal, respectively, for parameter management, website configuration, system log, interface security settings, SMS configuration, WeChat template message and several functional modules to achieve system configuration. In this paper, three types of sensors are used to analyze the data changes in the process of walking through three types of data, and different weights are given as the results of step-counting. When the peak value of sensor data is measured, only the peak value of the primary axial data of each sensor is analyzed, which should be determined according to the actual axial value of the sensor. In this paper, the users’ evaluation indexes of sports fitness app are divided into two groups: importance and satisfaction, so the obtained data are directly divided into two groups: importance and satisfaction of user experience indexes of sports fitness app, and the two groups of data are matched with the sample t test to ensure the scientific conclusion. Finally, the advantages and disadvantages of the user experience of college students’ sports fitness app are analyzed through IPA analysis. Heuristic evaluation is carried out on the step app to score the second-level usability index of the app. The first-level usability index score and the total usability score of the step app are obtained by calculation. There is not much difference between male and female students who use sports apps. Among them, 288 are male students, accounting for 58.2% of the total and 16.4% are female students. The results show that the use of artificial intelligence technology can reduce the overall energy consumption of step-counting algorithm, so as to achieve an energy-saving step-counting algorithm.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5582598. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.