IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5577250.html
   My bibliography  Save this article

Casing Collapse Strength Analysis under Nonuniform Loading Using Experimental and Numerical Approach

Author

Listed:
  • Dongfeng Li
  • Fu Yu
  • Heng Fan
  • Rui Wang
  • Shangyu Yang
  • Xiangzhen Yan

Abstract

Multistage fracturing is the main means of shale gas development, and casing deformation frequently occurs during fracturing of shale gas horizontal wells. Fracturing fluid entering the formation will change in situ stress nearby the wellbore. The changes of in situ stress are mainly reflected in the following two aspects: one is the increase of in situ stress and the other is the nonuniformity of in situ stress along the wellbore. And it is for this reason that the production casing is more likely to collapse under the nonuniform in situ stress load. According to the service conditions of production casing in shale gas reservoir, this paper studied the casing deformation and the collapsing strength subjected to the nonuniform loading by the experimental and numerical simulation method. The results show that under the condition of nonuniform loading, (1) the diameter variation rate of the casing reduces with the increase in the ratio of sample to tooling length. When the ratio is less than 3, the casing collapse strength will be significantly reduced. And when the ratio is greater than 6, the impact of sample length on casing collapse strength can be ignored. (2) The increase in the applied loading angle will decrease the diameter variation rate. When the loading angle increases from 0° to 90°, the critical load value increases from 1600 kN to 4000 kN. (3) The increase in load unevenness coefficient will rapidly decrease the casing collapse strength. When the load unevenness coefficient n is 0.8, the casing collapse strength reduces to 60%, and when the load unevenness coefficient n is 0, the casing collapse strength reduces to 28%. The findings of this study can help for better understanding of casing damage mechanism in volume fracturing of shale gas horizontal well and guide the selection of multistage fracturing casing type and fracturing interval design.

Suggested Citation

  • Dongfeng Li & Fu Yu & Heng Fan & Rui Wang & Shangyu Yang & Xiangzhen Yan, 2021. "Casing Collapse Strength Analysis under Nonuniform Loading Using Experimental and Numerical Approach," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, September.
  • Handle: RePEc:hin:jnlmpe:5577250
    DOI: 10.1155/2021/5577250
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5577250.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5577250.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5577250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciej Dutkiewicz & Ivan Shatskyi & Oleh Martsynkiv & Eduard Kuzmenko, 2022. "Mechanism of Casing String Curvature Due to Displacement of Surface Strata," Energies, MDPI, vol. 15(14), pages 1-12, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5577250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.