IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5574501.html
   My bibliography  Save this article

Improved Particle Swarm Optimization Algorithm in Power System Network Reconfiguration

Author

Listed:
  • Yanmin Wu
  • Qipeng Song

Abstract

With the rapid development of the social economy, the rapid development of all social circles places higher demands on the electricity industry. As a fundamental industry supporting the salvation of the national economy, society, and human life, the electricity industry will face a significant improvement and the restructuring of the network as an important part of the power system should also be optimised. This paper first introduces the development history of swarm intelligence algorithm and related research work at home and abroad. Secondly, it puts forward the importance of particle swarm optimization algorithm for power system network reconfiguration and expounds the basic principle, essential characteristics, and basic model of the particle swarm optimization algorithm. This paper completes the work of improving PSO through the common improved methods of PSO and the introduction of mutation operation and tent mapping. In the experimental simulation part, the improved particle swarm optimization algorithm is used to simulate the 10-machine 39-bus simulation system in IEEE, and the experimental data are compared with the chaos genetic algorithm and particle swarm optimization discrete algorithm. Through the experimental data, we can know that the improved particle swarm optimization algorithm has the least number of actions in switching times, only 4 times, and the chaos genetic algorithm and discrete particle swarm optimization algorithm are 5 times; compared with the other two algorithms, the improved particle swarm optimization algorithm has the fastest convergence speed and the highest convergence accuracy. The improved particle swarm optimization algorithm proposed in this paper provides an excellent solution for power system network reconfiguration and has important research significance for power system subsequent optimization and particle swarm optimization algorithm improvement.

Suggested Citation

  • Yanmin Wu & Qipeng Song, 2021. "Improved Particle Swarm Optimization Algorithm in Power System Network Reconfiguration," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-10, March.
  • Handle: RePEc:hin:jnlmpe:5574501
    DOI: 10.1155/2021/5574501
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5574501.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5574501.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5574501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang Li & Daniel C. Coster, 2022. "Improved Particle Swarm Optimization Algorithms for Optimal Designs with Various Decision Criteria," Mathematics, MDPI, vol. 10(13), pages 1-16, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5574501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.