Author
Listed:
- Tuan Anh Pham
- Van Quan Tran
- Huong-Lan Thi Vu
Abstract
This study focuses on the use of deep neural network (DNN) to predict the soil friction angle, one of the crucial parameters in geotechnical design. Besides, particle swarm optimization (PSO) algorithm was used to improve the performance of DNN by selecting the best structural DNN parameters, namely, the optimal numbers of hidden layers and neurons in each hidden layer. For this aim, a database containing 245 laboratory tests collected from a project in Ho Chi Minh city, Vietnam, was used for the development of the proposed hybrid PSO-DNN model, including seven input factors (soil state, standard penetration test value, unit weight of soil, void ratio, thickness of soil layer, top elevation of soil layer, and bottom elevation of soil layer) and the friction angle was considered as the target. The data set was divided into three parts, namely, the training, validation, and testing sets for the construction, validation, and testing phases of the model. Various quality assessment criteria, namely, the coefficient of determination ( R 2 ), mean absolute error (MAE), and root mean square error (RMSE), were used to estimate the performance of PSO-DNN models. The PSO algorithm showed a remarkable ability to find out an optimal DNN architecture for the prediction process. The results showed that the PSO-DNN model using 10 hidden layers outperformed the DNN model, in which the average correlation improvement increased R 2 by 1.83%, MAE by 5.94%, and RMSE by 8.58%. Besides, a global sensitivity analysis technique was used to detect the most important inputs, and it showed that, among the seven input variables, the elevation of top and bottom of soil played an important role in predicting the friction angle of soil.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5570945. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.