IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5570192.html
   My bibliography  Save this article

Fairness of Task Allocation in Crowdsourcing Workflows

Author

Listed:
  • Donglai Fu
  • Yanhua Liu

Abstract

Fairness plays a vital role in crowd computing by attracting its workers. The power of crowd computing stems from a large number of workers potentially available to provide high quality of service and reduce costs. An important challenge in the crowdsourcing market today is the task allocation of crowdsourcing workflows. Requester-centric task allocation algorithms aim to maximize the completion quality of the entire workflow and minimize its total cost, which are discriminatory for workers. The crowdsourcing workflow needs to balance two objectives, namely, fairness and cost. In this study, we propose an alternative greedy approach with four heuristic strategies to address such an issue. In particular, the proposed approach aims to monitor the current status of workflow execution and use heuristic strategies to adjust the parameters of task allocation. We design a two-phase allocation model to accurately match the tasks with workers. The F-Aware allocates each task to the worker that maximizes the fairness and minimizes the cost. We conduct extensive experiments to quantitatively evaluate the proposed algorithms in terms of running time, fairness, and cost by using a customer objective function on the WorkflowSim, a well-known cloud simulation tool. Experimental results based on real-world workflows show that the F-Aware, which is 1% better than the best competitor algorithm, outperforms other optimal solutions in finding the tradeoff between fairness and cost.

Suggested Citation

  • Donglai Fu & Yanhua Liu, 2021. "Fairness of Task Allocation in Crowdsourcing Workflows," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-11, April.
  • Handle: RePEc:hin:jnlmpe:5570192
    DOI: 10.1155/2021/5570192
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5570192.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5570192.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5570192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5570192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.