Author
Listed:
- Jun Ye
- Shigui Du
- Rui Yong
Abstract
The notion of multifuzzy sets (MFSs) or multi-interval-valued fuzzy sets (MIVFSs) provides a new method to represent some problems with a sequence of the different and/or same fuzzy/interval-valued fuzzy membership values of an element to the set. Then, a fuzzy cubic set (FCS) consists of a certain part (a fuzzy value) and an uncertain part (an interval-valued fuzzy value) but cannot represent hybrid information of both MFS and MIVFS. To adequately depict the opinion of several experts/decision-makers by using a union/sequence of the different and/or same fuzzy cubic values for an object assessed in group decision-making (GDM) problems, this paper proposes a multifuzzy cubic set (MFCS) notion as the conceptual extension of FCS to express the hybrid information of both MFS and MIVFS in the fuzzy setting of both uncertainty and certainty. Then, we propose three correlation coefficients of MFCSs and then introduce correlation coefficients of MFSs and MIVFSs as special cases of the three correlation coefficients of MFCSs. Further, the multicriteria GDM methods using three weighted correlation coefficients of MFCSs are developed under the environment of MFCSs, which contains the MFS and MIVFS GDM methods. Lastly, these multicriteria GDM methods are applied in an illustrative example on the selection problem of equipment suppliers; then their decision results and comparative analysis indicate that the developed GDM methods are more practicable and effective and reflect that either different correlation coefficients or different information expressions can also impact on the ranking of alternatives. Therefore, this study indicates the main contribution of the multifuzzy cubic information expression, correlation coefficients, and GDM methods in the multifuzzy setting of both uncertainty and certainty.
Suggested Citation
Jun Ye & Shigui Du & Rui Yong, 2021.
"Multifuzzy Cubic Sets and Their Correlation Coefficients for Multicriteria Group Decision-Making,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-9, February.
Handle:
RePEc:hin:jnlmpe:5520335
DOI: 10.1155/2021/5520335
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5520335. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.