IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5517289.html
   My bibliography  Save this article

A Novel Input Variable Selection and Structure Optimization Algorithm for Multilayer Perceptron-Based Soft Sensors

Author

Listed:
  • Hongxun Wang
  • Lin Sui
  • Mengyan Zhang
  • Fangfang Zhang
  • Fengying Ma
  • Kai Sun

Abstract

A novel optimization algorithm for multilayer perceptron- (MLP-) based soft sensors is proposed in this paper. The proposed approach integrates input variable selection and hidden layer optimization on MLP into a constrained optimization problem. The nonnegative garrote (NNG) is implemented to perform the shrinkage of input variables and optimization of hidden layer simultaneously. The optimal garrote parameter of NNG is determined by combining cross-validation with Hannan-Quinn information criterion. The performance of the algorithm is demonstrated by an artificial dataset and the practical application of the desulfurization process in a thermal power plant. Comparative results demonstrated that the developed algorithm could build simpler and more accurate models than other state-of-the-art soft sensor algorithms.

Suggested Citation

  • Hongxun Wang & Lin Sui & Mengyan Zhang & Fangfang Zhang & Fengying Ma & Kai Sun, 2021. "A Novel Input Variable Selection and Structure Optimization Algorithm for Multilayer Perceptron-Based Soft Sensors," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-10, May.
  • Handle: RePEc:hin:jnlmpe:5517289
    DOI: 10.1155/2021/5517289
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5517289.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5517289.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5517289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongshi Liu & Xiaodong Yu & Jianjun Zhao & Changchun Pan & Kai Sun, 2022. "Development of a Robust Data-Driven Soft Sensor for Multivariate Industrial Processes with Non-Gaussian Noise and Outliers," Mathematics, MDPI, vol. 10(20), pages 1-16, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5517289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.