Author
Listed:
- Xin-Yu Tu
- Bo Zhang
- Yu-Peng Jin
- Guo-Jian Zou
- Jian-Guo Pan
- Mao-Zhen Li
Abstract
Air pollution has become a critical issue in human’s life. Predicting the changing trends of air pollutants would be of great help for public health and natural environments. Current methods focus on the prediction accuracy and retain the forecasting time span within 12 hours. Shorter time span decreases the practicability of these perditions, even with higher accuracy. This study proposes an attention and autoencoder (A&A) hybrid learning approach to obtain a longer period of air pollution changing trends while holding the same high accuracy. Since pollutant concentration forecast highly relates to time changing, quite different from normal prediction problems like autotranslation, we integrate “time decay factor” into the traditional attention mechanism. The time decay factor can alleviate the impact of the value observed from a longer time before while increasing the impact of the value from a closer time point. We also utilize the hidden states in the decoder to build connection between history values and current ones. Thus, the proposed model can extract the changing trend of a longer history time span while coping with abrupt changes within a shorter time span. A set of experiments demonstrate that the A&A learning approach can obtain the changing trend of air pollutants, like PM2.5, during a longer time span of 12, 24, or even 48 hours. The approach is also tested under different pollutant concentrations and different periods and the results validate its robustness and generality.
Suggested Citation
Xin-Yu Tu & Bo Zhang & Yu-Peng Jin & Guo-Jian Zou & Jian-Guo Pan & Mao-Zhen Li, 2021.
"Longer Time Span Air Pollution Prediction: The Attention and Autoencoder Hybrid Learning Model,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-16, June.
Handle:
RePEc:hin:jnlmpe:5515103
DOI: 10.1155/2021/5515103
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5515103. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.