IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5489896.html
   My bibliography  Save this article

Research on Theoretical Modeling and Parameter Sensitivity of a Single-Rod Double-Cylinder and Double-Coil Magnetorheological Damper

Author

Listed:
  • Suojun Hou
  • Gang Liu

Abstract

For the single-rod double-cylinder and double-coil magnetorheological (MR) damper studied in this paper, the damping force model of the damper is established by adopting multidisciplinary domain modeling method bond graph theory. Firstly, combined with the structure of the MR damper, the bond graph model of the MR damper was established, the damping force model of the damper was derived through the bond graph theory, and the influence factors, such as the displacement, velocity, and acceleration of the damper were considered in the model. Based on the simulation of force-displacement and force-velocity characteristics of the damping force carried out by the damper theoretical model under different currents and velocities as well as the comparison with the damper bench test results, it was found that the force-displacement and force-velocity characteristic experiment curves of the damper agreed well with the simulation results. Under different working conditions, the maximum error of damping force of the MR damper was 7.2%. The damping force model of the MR damper studied in this paper was compared with that of the damper without considering the inertia force of MR fluid, and the influence of the inertia force of MR fluid on the damping force of the MR damper was analyzed. The results show that when the frequency of the damper is large, the inertial force of MR fluid has an important influence on the damping force; therefore, considering the inertial force of MR fluid in the model can greatly improve the accuracy of the model. The influence degree of key parameters on the damping force of the MR damper was studied through the theoretical model; such key parameters ranging from large to small were the channel clearance, energizing current, piston diameter, motion velocity, channel length, zero-field viscosity of MR fluid, and nitrogen pressure. This provides a basis for the adjustment of the damping force of the MR damper.

Suggested Citation

  • Suojun Hou & Gang Liu, 2020. "Research on Theoretical Modeling and Parameter Sensitivity of a Single-Rod Double-Cylinder and Double-Coil Magnetorheological Damper," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-20, February.
  • Handle: RePEc:hin:jnlmpe:5489896
    DOI: 10.1155/2020/5489896
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/5489896.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/5489896.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/5489896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5489896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.