IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5463415.html
   My bibliography  Save this article

Interaction between Track and Long-Span Cable-Stayed Bridge: Recommendations for Calculation

Author

Listed:
  • Kaize Xie
  • Weigang Zhao
  • Xiaopei Cai
  • Ping Wang
  • Jia Zhao

Abstract

Geometric nonlinearity (GN) and initial internal forces (IIFs) are the basic characteristics of cable-stayed bridges, but now there is no effective method for analyzing the effect of them on bridge-track interaction of continuous welded rail (CWR) on cable-stayed bridge. A method for reconstructing the displacement-force curve of ballast longitudinal resistance was put forward according to the deformation of cable-stayed bridges under the completed bridge state. A feasibility study on the method was conducted via two aspects of the force and deformation of CWR on a 5 × 40 m single-line simple-supported beam bridge with initial deformation. With the multi-element modeling method and the updated Lagrangian formulation method, a rail-beam-cable-tower 3D calculation model considering the GN and IIFs of cable-stayed bridge was established. Taking a (140 + 462 + 1092 + 462 + 140 m) twin-tower cable-stayed bridge as an example, the impacts of GN and IIFs on bridge-track interaction were comparatively analyzed. The results show that the method put forward to reconstruct ballast longitudinal resistance can prevent the impact of initial deformation of bridge and makes it possible to consider the effect of IIFs of cable-stayed bridge on bridge-track interaction. The GN and IIFs play important roles in the calculation of rail longitudinal force due to vertical bending of bridge deck under train load and the variance of cable force due to negative temperature changes in bridge decks and rails with rail breaking, and the two factors can reduce rail longitudinal force and variance of cable force by 11.8% and 14.6%, respectively. The cable-stayed bridge can be simplified as a continuous beam bridge with different constraints at different locations, when rail longitudinal force due to positive temperature changes in bridge deck and train braking is calculated.

Suggested Citation

  • Kaize Xie & Weigang Zhao & Xiaopei Cai & Ping Wang & Jia Zhao, 2020. "Interaction between Track and Long-Span Cable-Stayed Bridge: Recommendations for Calculation," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-14, May.
  • Handle: RePEc:hin:jnlmpe:5463415
    DOI: 10.1155/2020/5463415
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/5463415.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/5463415.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/5463415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5463415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.