Author
Listed:
- Marco Aurelio Sotelo-Figueroa
- Héctor José Puga Soberanes
- Juan Martín Carpio
- Héctor J. Fraire Huacuja
- Laura Cruz Reyes
- Jorge Alberto Soria-Alcaraz
Abstract
In recent years Grammatical Evolution (GE) has been used as a representation of Genetic Programming (GP) which has been applied to many optimization problems such as symbolic regression, classification, Boolean functions, constructed problems, and algorithmic problems. GE can use a diversity of searching strategies including Swarm Intelligence (SI). Particle Swarm Optimisation (PSO) is an algorithm of SI that has two main problems: premature convergence and poor diversity. Particle Evolutionary Swarm Optimization (PESO) is a recent and novel algorithm which is also part of SI. PESO uses two perturbations to avoid PSO’s problems. In this paper we propose using PESO and PSO in the frame of GE as strategies to generate heuristics that solve the Bin Packing Problem (BPP); it is possible however to apply this methodology to other kinds of problems using another Grammar designed for that problem. A comparison between PESO, PSO, and BPP’s heuristics is performed through the nonparametric Friedman test. The main contribution of this paper is proposing a Grammar to generate online and offline heuristics depending on the test instance trying to improve the heuristics generated by other grammars and humans; it also proposes a way to implement different algorithms as search strategies in GE like PESO to obtain better results than those obtained by PSO.
Suggested Citation
Marco Aurelio Sotelo-Figueroa & Héctor José Puga Soberanes & Juan Martín Carpio & Héctor J. Fraire Huacuja & Laura Cruz Reyes & Jorge Alberto Soria-Alcaraz, 2014.
"Improving the Bin Packing Heuristic through Grammatical Evolution Based on Swarm Intelligence,"
Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-12, July.
Handle:
RePEc:hin:jnlmpe:545191
DOI: 10.1155/2014/545191
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:545191. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.