IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/543848.html
   My bibliography  Save this article

Fractional Variational Iteration Method and Its Application to Fractional Partial Differential Equation

Author

Listed:
  • Asma Ali Elbeleze
  • Adem Kılıçman
  • Bachok M. Taib

Abstract

We use the fractional variational iteration method (FVIM) with modified Riemann-Liouville derivative to solve some equations in fluid mechanics and in financial models. The fractional derivatives are described in Riemann-Liouville sense. To show the efficiency of the considered method, some examples that include the fractional Klein-Gordon equation, fractional Burgers equation, and fractional Black-Scholes equation are investigated.

Suggested Citation

  • Asma Ali Elbeleze & Adem Kılıçman & Bachok M. Taib, 2013. "Fractional Variational Iteration Method and Its Application to Fractional Partial Differential Equation," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-10, July.
  • Handle: RePEc:hin:jnlmpe:543848
    DOI: 10.1155/2013/543848
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/543848.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/543848.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/543848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Yashveer & Singh, Vineet Kumar, 2021. "Computational approach based on wavelets for financial mathematical model governed by distributed order fractional differential equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 531-569.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:543848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.