Author
Listed:
- Axel Fernando Domínguez Alvarado
- Alberto Díaz Díaz
Abstract
This paper presents the development of a model of homogeneous, moderately thick shells for elastodynamic problems. The model is obtained by adapting and modifying SAM-H model (stress approach model of homogeneous shells) developed by Domínguez Alvarado and Díaz in (2018) for static problems. In the dynamic version of SAM-H presented herein, displacements and stresses are approximated by polynomials of the out-of-plane coordinate. The stress approximation coincides with the static version of SAM-H when dynamic effects are neglected. The generalized forces and displacements appearing in the approximations are the same as those involved in a classical, moderately thick shell model (CS model) but the stress approximation adopted herein is more complex: the 3D motion equations and the stress boundary conditions at the faces of the shell are verified. The generalized motion and constitutive equations of dynamic SAM-H model are obtained by applying a variant of Euler–Lagrange equation which includes pertinently Hellinger–Reissner functional. In the constitutive equations, Poisson’s effect of out-of-plane normal stresses on in-plane strains is not ignored; this is one important feature of SAM-H. To test the accuracy of dynamic SAM-H model, the following structures were considered: a hollow sphere and a catenoid. In each case, eigenfrequencies are first calculated and then a frequency analysis is performed applying a harmonic load. The results are compared to those of a CS model, MITC6 (mixed interpolation of tensorial components with 6 nodes per element) shell element calculations, and solid finite element computations. In the two problems, CS, MITC6, and dynamic SAM-H models yield accurate eigenfrequencies and eigenmodes. Nevertheless, the frequency analysis performed in each case showed that dynamic SAM-H provides much more accurate amplitudes of stresses and displacements than the CS model and the MITC6 shell finite element technique.
Suggested Citation
Axel Fernando Domínguez Alvarado & Alberto Díaz Díaz, 2020.
"A Mixed Stress/Displacement Approach Model of Homogeneous Shells for Elastodynamic Problems,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-15, January.
Handle:
RePEc:hin:jnlmpe:5429615
DOI: 10.1155/2020/5429615
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5429615. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.