IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5391351.html
   My bibliography  Save this article

Research on Control Strategy of Hydraulic Regenerative Braking of Electrohydraulic Hybrid Electric Vehicles

Author

Listed:
  • Qinghai Zhao
  • Hongxin Zhang
  • Yafei Xin

Abstract

The vehicle will generate an amount of current while the electric vehicle just starting to regeneratively brake. In order to avoid the impact of high current on the traction battery, a novel electrohydraulic hybrid electric vehicle has been proposed. The main power source is supplied by the electric drive system, and the hydraulic system performs the auxiliary drive system that fully exerts the advantages of the electric drive system and the hydraulic drive system. A proper regenerative braking control strategy is presented, and the control parameters are determined by the fuzzy optimization algorithm. The simulation analysis built the model through the united simulation of AMESim and MATLAB/Simulink. The results illustrated that the optimized control strategy can reduce battery consumption by 1.22% under NEDC-operating conditions.

Suggested Citation

  • Qinghai Zhao & Hongxin Zhang & Yafei Xin, 2021. "Research on Control Strategy of Hydraulic Regenerative Braking of Electrohydraulic Hybrid Electric Vehicles," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-9, February.
  • Handle: RePEc:hin:jnlmpe:5391351
    DOI: 10.1155/2021/5391351
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5391351.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5391351.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5391351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zongjun Yin & Xuegang Ma & Chunying Zhang & Rong Su & Qingqing Wang, 2023. "A Logic Threshold Control Strategy to Improve the Regenerative Braking Energy Recovery of Electric Vehicles," Sustainability, MDPI, vol. 15(24), pages 1-33, December.
    2. Li, Lin & Zhang, Tiezhu & Sun, Binbin & Wu, Kaiwei & Sun, Zehao & Zhang, Zhen & Lin, Lianhua & Xu, Haigang, 2023. "Research on electro-hydraulic ratios for a novel mechanical-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 270(C).
    3. Wang, Bohan & Deng, Ziwei & Zhang, Baocheng, 2022. "Simulation of a novel wind–wave hybrid power generation system with hydraulic transmission," Energy, Elsevier, vol. 238(PB).
    4. Trieu Minh Vu & Reza Moezzi & Jindrich Cyrus & Jaroslav Hlava & Michal Petru, 2021. "Automatic Clutch Engagement Control for Parallel Hybrid Electric Vehicle," Energies, MDPI, vol. 14(21), pages 1-15, November.
    5. Shanxiao Du & Jichao Hong & Hongxin Zhang & Qinghai Zhao & Tiezhu Zhang & Xiaoming Xu & Xiaotian Jiang, 2021. "Research on Cavitation of the Rotating-Sleeve Distributing Flow System Considering Different Cam Groove Profiles," Energies, MDPI, vol. 14(8), pages 1-17, April.
    6. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    7. Yang, Jian & Liu, Bo & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin, 2023. "Multi-parameter controlled mechatronics-electro-hydraulic power coupling electric vehicle based on active energy regulation," Energy, Elsevier, vol. 263(PC).
    8. Cong Geng & Dawen Ning & Linfu Guo & Qicheng Xue & Shujian Mei, 2021. "Simulation Research on Regenerative Braking Control Strategy of Hybrid Electric Vehicle," Energies, MDPI, vol. 14(8), pages 1-19, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5391351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.