Author
Listed:
- Zhiwei Qiao
- Gage Redler
- Boris Epel
- Howard Halpern
Abstract
Purpose . The total variation (TV) minimization algorithm is an effective image reconstruction algorithm capable of accurately reconstructing images from sparse and/or noisy data. The TV model consists of two terms: a data fidelity term and a TV regularization term. Two constrained TV models, data divergence-constrained TV minimization (DDcTV) and TV-constrained data divergence minimization (TVcDM), have been successfully applied to computed tomography (CT) and electron paramagnetic resonance imaging (EPRI). In this work, we propose a new constrained TV model, a doubly constrained TV (dcTV) model, which has the potential to further improve the reconstruction accuracy for the two terms which are both of constraint forms. Methods . We perform an inverse crime study to validate the model and its Chambolle-Pock (CP) solver and characterize the performance of the dcTV-CP algorithm in the context of CT. To demonstrate the superiority of the dcTV model, we compare the convergence rate and the reconstruction accuracy with the DDcTV and TVcDM models via simulated data. Results and Conclusions. The performance-characterizing study shows that the dcTV-CP algorithm is an accurate and convergent algorithm, with the model parameters impacting the reconstruction accuracy and the algorithm parameters impacting the convergence path and rate. The comparison studies show that the dcTV-CP algorithm has a relatively fast convergence rate and can achieve higher reconstruction accuracy from sparse projections or noisy projections relative to the other two single-constrained TV models. The knowledge and insights gained in the work may be utilized in the application of the new model in other imaging modalities including divergence-beam CT, magnetic resonance imaging (MRI), positron emission tomography (PET), and EPRI.
Suggested Citation
Zhiwei Qiao & Gage Redler & Boris Epel & Howard Halpern, 2020.
"A Doubly Constrained TV Algorithm for Image Reconstruction,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-15, January.
Handle:
RePEc:hin:jnlmpe:5382106
DOI: 10.1155/2020/5382106
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5382106. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.