Author
Listed:
- Dong Hao
- Zong-de Fang
- Ya-hui Hu
Abstract
The aeronautical two-stage five-branching planets gear train is widely used in the internal decelerator of aeroengines and the main decelerator of helicopters. In order to study the load-sharing characteristics of the aeronautical two-stage five-branching planets gear train, a static load-sharing calculation model for this system is established. The loaded tooth contact analysis method is introduced in the static load-sharing calculation model, and the time-varying meshing stiffness condition of each gear pair is obtained. According to the characteristics of the whole system’s power flow closed-loop characteristics, the twist angle deformation coordination condition of the system is established, which includes installation error, manufacturing error, and floating factor. Using the equivalent meshing error theory, the error of the gear manufacturing and the installation error of the system are analyzed. At the same time, the floating meshing error caused by the change of the meshing side gap caused by the floating of the sun gear and the inner ring gear is considered. The moment balance condition of the sun gear based on the floating of the spline gap is established. Combined with the coordination condition of torsion angle deformation, the torque of each gear pair is obtained. The load-sharing coefficient of the system is further calculated. The influence of the manufacturing error, the installation error, and the floating amount on the load-sharing coefficient is analyzed. The results show that the load-sharing coefficient of each planets gear varies with time when the manufacturing error and installation error alone affect the load-sharing characteristic. The sun gear floating can obviously improve the load-sharing performance. The correctness of the theoretical algorithm is verified by experiments. A new method of calculating the load-sharing characteristics of this system is put forward, which provides a theoretical basis for determining the load-sharing coefficient, reasonable allocation, and control tolerance on the design.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5368294. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.