IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5323530.html
   My bibliography  Save this article

Single-Valued and Interval-Valued Neutrosophic Hidden Markov Model

Author

Listed:
  • D. Nagarajan
  • J. Kavikumar
  • Amer Rasheed

Abstract

Neutrosophic sets are employed to be handled indeterminacy in a real-life situation. Thus, neutrosophic approaches in the medical domain prove their excellence. The neutrosophic hidden Markov model is an inventiveness domain for uncertainty. The existing hidden Markov models are not able to consider the uncertainty information, but the neutrosophic hidden Markov model effectively finds the optimal path between the states where vagueness exists. The proposed study comprises the idea of single-value and interval-valued neutrosophic sets into the hidden Markov model and decoding the path using the Viterbi algorithm. It has been used to determine the sequence of motility primitives for an afforded time series. The method is to be handled without having a lower membership function for falsity, and because of this advantage, one can save time significantly during computation. The neutrosophic score helps to find the crisp value of the probability. Moreover, the proposed work highlights the main childhood obesity risk in lockdown situations.

Suggested Citation

  • D. Nagarajan & J. Kavikumar & Amer Rasheed, 2022. "Single-Valued and Interval-Valued Neutrosophic Hidden Markov Model," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-12, September.
  • Handle: RePEc:hin:jnlmpe:5323530
    DOI: 10.1155/2022/5323530
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/5323530.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/5323530.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/5323530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5323530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.