IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5319530.html
   My bibliography  Save this article

A Fast Computational Method for the Minimum Duration Transfer Trajectories of Space-to-Ground Vehicles

Author

Listed:
  • Qingguo Liu
  • Xinxue Liu
  • Jian Wu

Abstract

On the conditions that the spacecraft engine is in finite thrust mode and the maneuver time is given, it takes a long time to compute the minimum duration transfer trajectories of space-to-ground vehicles, which is mainly because the initial values of the adjoint variables involved in the optimization model have no definite physical meanings and the model is sensitive to them. In order to develop space-to-ground transfer trajectory programmes in real time in an uncertain environment for the decision makers, we propose a fast method for computing the minimum duration transfer trajectories of space-to-ground vehicles with the given position of the landing point and the arbitrary maneuver point. First, the optimization model based on the hybrid method is established to compute the minimum duration transfer trajectory. Then, the region composed of maneuverable points is gridded and the initial values of the adjoint variables and the values of partial state variables of the minimum duration transfer trajectories at all gridded points are computed and saved to a database. Finally, the predicted values of the initial values of the adjoint variables and the values of partial state variables at any maneuver point within the region composed of maneuverable points are computed by using a binary cubic interpolation method. Finally, the minimum duration transfer trajectory is obtained by the hybrid method which takes the neighborhood of the predicted values as the search ranges of the initial values of the adjoint variables and the values of partial state variables. Simulation results demonstrate that the proposed method, which requires only 2.93% of the computational time of the hybrid method, can improve substantially the computational time of the minimum duration transfer trajectory of a space-to-ground vehicle under the guarantee of ensuring accuracy. The methodology of converting the time domain into the space domain is well applied in this paper.

Suggested Citation

  • Qingguo Liu & Xinxue Liu & Jian Wu, 2019. "A Fast Computational Method for the Minimum Duration Transfer Trajectories of Space-to-Ground Vehicles," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-17, May.
  • Handle: RePEc:hin:jnlmpe:5319530
    DOI: 10.1155/2019/5319530
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/5319530.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/5319530.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/5319530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5319530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.