IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5289038.html
   My bibliography  Save this article

Semisupervised SVM by Hybrid Whale Optimization Algorithm and Its Application in Oil Layer Recognition

Author

Listed:
  • Yong-ke Pan
  • Ke-wen Xia
  • Wen-jia Niu
  • Zi-ping He

Abstract

In many fields, such as oil logging, it is expensive to obtain labeled data, and a large amount of inexpensive unlabeled data are not used. Therefore, it is necessary to use semisupervised learning to obtain accurate classification with limited labeled data and many unlabeled data. The semisupervised support vector machine (S3VM) is the most useful method in semisupervised learning. Nevertheless, S3VM model performance will degrade when the sample number of categories is not even or have lots of unlabeled samples. Thus, a new semisupervised SVM by hybrid whale optimization algorithm (HWOA-S3VM) is proposed in this paper. Firstly, a tradeoff control parameter is added in S3VM to deal with an uneven sample of category which can cause S3VM to degrade. Then, a hybrid whale optimization algorithm (HWOA) is used to optimize the model parameters of S3VM to increase the classification accuracy. For HWOA improvement, an opposition-based cubic mapping is used to initialize the WOA population to improve the convergence speed, and the catfish effect is used to help WOA jump out of the local optimum and obtain the global optimization ability. In the experiments, firstly, the HWOA is tested by 12 classic benchmark functions of CEC2005 and four functions of CEC2014 compared with the other five algorithms. Then, six UCI datasets are used to test the performance of HWOA-S3VM and compared with the other four algorithms. Finally, we applied HWOA-S3VM to perform oil layer recognition of three oil well datasets. These experimental results show that (1) HWOA has a higher convergence speed and better global searchability than other algorithms. (2) HWOA-S3VM model has higher classification accuracy on UCI datasets than other algorithms when combined, labeled, and unlabeled data are used as the training dataset. (3) The recognition accuracy and speed of the HWOA-S3VM model are superior to the other four algorithms when applied in oil layer recognition.

Suggested Citation

  • Yong-ke Pan & Ke-wen Xia & Wen-jia Niu & Zi-ping He, 2021. "Semisupervised SVM by Hybrid Whale Optimization Algorithm and Its Application in Oil Layer Recognition," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-19, February.
  • Handle: RePEc:hin:jnlmpe:5289038
    DOI: 10.1155/2021/5289038
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5289038.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5289038.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5289038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5289038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.