IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5251804.html
   My bibliography  Save this article

Impact of Activation Energy and Temperature-Dependent Heat Source/Sink on Maxwell–Sutterby Fluid

Author

Listed:
  • T. Sajid
  • S. Tanveer
  • Z. Sabir
  • J. L. G. Guirao

Abstract

The present article aims to investigate the behaviour of Maxwell–Sutterby fluid past an inclined stretching sheet accompanied with variable thermal conductivity, exponential heat source/sink, magneto-hydrodynamics (MHD), and activation energy. By utilizing the compatible similarity transformations, the nondimensionless PDEs are converted into dimensionless ODEs and further these ODEs are tackled with the help of the bvp4c numerical technique. To check the legitimacy of upcoming results and reliability of the applied bvp4c numerical scheme, a comparison with existing literature and nonlinear shooting method is made. The numerical outcomes delivered here show that the temperature profile escalates due to an augmentation in the heat sink parameter and moreover mass fraction field escalates on account of an improvement in the activation energy parameter.

Suggested Citation

  • T. Sajid & S. Tanveer & Z. Sabir & J. L. G. Guirao, 2020. "Impact of Activation Energy and Temperature-Dependent Heat Source/Sink on Maxwell–Sutterby Fluid," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-15, August.
  • Handle: RePEc:hin:jnlmpe:5251804
    DOI: 10.1155/2020/5251804
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/5251804.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/5251804.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/5251804?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Umar, Muhammad & Sabir, Zulqurnain & Raja, Muhammad Asif Zahoor & Baskonus, Haci Mehmet & Ali, Mohamed R. & Shah, Nehad Ali, 2023. "Heuristic computing with sequential quadratic programming for solving a nonlinear hepatitis B virus model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 234-248.
    2. Ewa Syguła & Kacper Świechowski & Małgorzata Hejna & Ines Kunaszyk & Andrzej Białowiec, 2021. "Municipal Solid Waste Thermal Analysis—Pyrolysis Kinetics and Decomposition Reactions," Energies, MDPI, vol. 14(15), pages 1-27, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5251804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.