IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/519125.html
   My bibliography  Save this article

Optimization Analysis of Supply Chain Resource Allocation in Customized Online Shopping Service Mode

Author

Listed:
  • Jianming Yao
  • Mengjie Gu

Abstract

For an online-shopping company, whether it can provide its customers with customized service is the key to enhance its customers’ experience value and its own competence. A good customized service requires effective integration and reasonable allocation of the company’s supply chain resources running in the background. Based on the analysis of the allocation of supply chain resources in the customized online shopping service mode and its operational characteristics, this paper puts forward an optimization model for the resource allocation and builds an improved ant algorithm to solve it. Finally, the effectiveness and feasibility of the optimization method and algorithm are demonstrated by a numerical simulation. This paper finds that the special online shopping environments lead to many dynamic and uncertain characters of the service demands. Different customized service patterns and their combination patterns should match with different supply chain resource allocations. The optimization model not only reflects the required service cost and delivery time in the objective function, but also considers the service scale effect optimization and the relations of integration benefits and risks. The improved ant algorithm has obvious advantages in flexibly balancing the multiobjective optimizations, adjusting the convergence speed, and adjusting the operation parameters.

Suggested Citation

  • Jianming Yao & Mengjie Gu, 2015. "Optimization Analysis of Supply Chain Resource Allocation in Customized Online Shopping Service Mode," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-11, May.
  • Handle: RePEc:hin:jnlmpe:519125
    DOI: 10.1155/2015/519125
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/519125.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/519125.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/519125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing Chen & Eunmi Jang, 2022. "A Sustainable Supply Chain Network Model Considering Carbon Neutrality and Personalization," Sustainability, MDPI, vol. 14(8), pages 1-23, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:519125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.