Author
Listed:
- Chunquan Dai
- Kun Jiang
- Quanlei Wang
Abstract
Most of the tunnel projects are related to the national economy and people’s livelihood, and their operational safety is of paramount importance. Tunnel safety accidents or hidden safety hazards often start from subtleties. Therefore, the identification of tunnel cracks is a key part of tunnel safety control. The development of computer vision technology has made it possible for the automatic detection of tunnel cracks. Aiming at the problem of low recognition accuracy of existing crack recognition algorithms, this paper uses an improved homomorphic filtering algorithm to dehaze and clear the collected images according to the characteristics of tunnel images and uses an adaptive median filter to denoise the grayscaled image. The extended difference of Gaussian function is used for edge extraction, and the morphological opening and closing operations are used to remove noise. The breakpoints of the binary image are connected after removing the noise to make the image more in line with the actual situation. Aiming at the identification of tunnel crack types, the block index is proposed and used to distinguish linear cracks and network cracks. Using the histogram-like method to distinguish linear cracks in different directions can well solve the mixed crack situation in an image. Compared with the traditional method, the recognition rate of the new algorithm is increased to 94.5%, which is much higher than the traditional crack recognition algorithm. The average processing time of an image is 5.2 s which is moderate, and the crack type discrimination accuracy is more than 92%. In general, the new algorithm has good prospects for theoretical promotion and high engineering application value.
Suggested Citation
Chunquan Dai & Kun Jiang & Quanlei Wang, 2020.
"Recognition of Tunnel Lining Cracks Based on Digital Image Processing,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, November.
Handle:
RePEc:hin:jnlmpe:5162583
DOI: 10.1155/2020/5162583
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5162583. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.