IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/512530.html
   My bibliography  Save this article

Extreme Dynamic Responses of MW-Level Wind Turbine Tower in the Strong Typhoon Considering Wind-Rain Loads

Author

Listed:
  • Zhenyu Wang
  • Yan Zhao
  • Fuqiang Li
  • Jianqun Jiang

Abstract

The damage and collapse accidents of wind turbines during violent typhoons and rainstorms have increased in recent years. To determine the dynamic response characteristics of high-power wind turbines under extreme conditions, wind load and rain load are simulated. The typhoon average wind velocity and fluctuating wind velocity are simulated by the unstable wind profile and harmony superposition method. The raindrop size distribution is simulated by the M-P spectrum, and the rain load is calculated according to the momentum theorem. A finite element model is established to study the aerodynamic responses of a wind turbine under random typhoon load and typhoon-rain loads. The maximum displacements and accelerations at the tower top and the maximum von Mises stresses at the tower bottom are calculated and compared after considering various combinations of wind direction deflections and rainfall intensities. The results indicate that instantaneous wind direction deflection has a substantial impact on the dynamic responses of wind turbines, and after introducing the effect of rain, the dynamic responses increase up to 13.7% with increasing rainfall intensities. This study has significant implications for analysing collapse accidents of wind turbines and for optimising the design of wind turbines under extreme typhoon conditions.

Suggested Citation

  • Zhenyu Wang & Yan Zhao & Fuqiang Li & Jianqun Jiang, 2013. "Extreme Dynamic Responses of MW-Level Wind Turbine Tower in the Strong Typhoon Considering Wind-Rain Loads," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-13, May.
  • Handle: RePEc:hin:jnlmpe:512530
    DOI: 10.1155/2013/512530
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/512530.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/512530.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/512530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:512530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.