IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5105709.html
   My bibliography  Save this article

A Stacked Autoencoder-Based Deep Neural Network for Achieving Gearbox Fault Diagnosis

Author

Listed:
  • Guifang Liu
  • Huaiqian Bao
  • Baokun Han

Abstract

Machinery fault diagnosis is pretty vital in modern manufacturing industry since an early detection can avoid some dangerous situations. Among various diagnosis methods, data-driven approaches are gaining popularity with the widespread development of data analysis techniques. In this research, an effective deep learning method known as stacked autoencoders (SAEs) is proposed to solve gearbox fault diagnosis. The proposed method can directly extract salient features from frequency-domain signals and eliminate the exhausted use of handcrafted features. Furthermore, to reduce the overfitting problem in training process and improve the performance for small training set, dropout technique and ReLU activation function are introduced into SAEs. Two gearbox datasets are employed to conform the effectiveness of the proposed method; the result indicates that the proposed method can not only achieve significant improvement but also is superior to the raw SAEs and some other traditional methods.

Suggested Citation

  • Guifang Liu & Huaiqian Bao & Baokun Han, 2018. "A Stacked Autoencoder-Based Deep Neural Network for Achieving Gearbox Fault Diagnosis," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-10, July.
  • Handle: RePEc:hin:jnlmpe:5105709
    DOI: 10.1155/2018/5105709
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2018/5105709.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2018/5105709.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/5105709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro Pena & Juan C. Tejada & Juan David Gonzalez-Ruiz & Mario Gongora, 2022. "Deep Learning to Improve the Sustainability of Agricultural Crops Affected by Phytosanitary Events: A Financial-Risk Approach," Sustainability, MDPI, vol. 14(11), pages 1-28, May.
    2. Ahmed Latif Yaser & Hamdy M. Mousa & Mahmoud Hussein, 2022. "Improved DDoS Detection Utilizing Deep Neural Networks and Feedforward Neural Networks as Autoencoder," Future Internet, MDPI, vol. 14(8), pages 1-18, August.
    3. Fotios Zantalis & Grigorios Koulouras & Sotiris Karabetsos & Dionisis Kandris, 2019. "A Review of Machine Learning and IoT in Smart Transportation," Future Internet, MDPI, vol. 11(4), pages 1-23, April.
    4. Elianne Mora & Jenny Cifuentes & Geovanny Marulanda, 2021. "Short-Term Forecasting of Wind Energy: A Comparison of Deep Learning Frameworks," Energies, MDPI, vol. 14(23), pages 1-26, November.
    5. Muhamad Nur Rohman & Jeng-Rong Ho & Chin-Te Lin & Pi-Cheng Tung & Chih-Kuang Lin, 2024. "Predicting and Enhancing the Multiple Output Qualities in Curved Laser Cutting of Thin Electrical Steel Sheets Using an Artificial Intelligence Approach," Mathematics, MDPI, vol. 12(7), pages 1-18, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5105709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.