IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5072487.html
   My bibliography  Save this article

Robust International Portfolio Optimization with Worst-Case Mean-LPM

Author

Listed:
  • Fei Luan
  • Weiguo Zhang
  • Yongjun Liu
  • Guoqiang Wang

Abstract

This paper proposes a robust international portfolio optimization model with the consideration of worst-case lower partial moment (LPM) and worst-case mean return. In our model, we assume that the distributions and the first- and second-order moments of distributions of returns of assets and exchange rates are all ambiguous. The proposed model can be reformulated into an equivalent semidefinite programming (SDP) problem, which is computationally tractable. For investigation of the performance of our model, we also give two benchmark models. The first benchmark model is a scenario-based model which uses historical observations of returns to approximate the future distributions. The second benchmark model only considers the ambiguity of distributions but does not consider the ambiguity of the first- and second-order moments of distributions. We conduct empirical experiments in a rolling forward way to evaluate the out-of-sample performances of our proposed model, the two benchmark models, and an equally weighted model using the return measures and various risk-adjusted return measures. The result shows that our model has the best performance. It verifies that investors can obtain benefits when employing the robust model and considering the ambiguity of the first- and second-order moments of distributions.

Suggested Citation

  • Fei Luan & Weiguo Zhang & Yongjun Liu & Guoqiang Wang, 2022. "Robust International Portfolio Optimization with Worst-Case Mean-LPM," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-10, February.
  • Handle: RePEc:hin:jnlmpe:5072487
    DOI: 10.1155/2022/5072487
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/5072487.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/5072487.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/5072487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dejan Živkov & Biljana Stankov & Nataša Papić-Blagojević & Jelena Damnjanović & Željko Račić, 2023. "How to reduce the extreme risk of losses in corn and soybean markets? Construction of a portfolio with European stock indices," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(3), pages 109-118.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5072487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.