IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/507056.html
   My bibliography  Save this article

Fractals and Hidden Symmetries in DNA

Author

Listed:
  • Carlo Cattani

Abstract

This paper deals with the digital complex representation of a DNA sequence and the analysis of existing correlations by wavelets. The symbolic DNA sequence is mapped into a nonlinear time series. By studying this time series the existence of fractal shapes and symmetries will be shown. At first step, the indicator matrix enables us to recognize some typical patterns of nucleotide distribution. The DNA sequence, of the influenza virus A (H1N1), is investigated by using the complex representation, together with the corresponding walks on DNA; in particular, it is shown that DNA walks are fractals. Finally, by using the wavelet analysis, the existence of symmetries is proven.

Suggested Citation

  • Carlo Cattani, 2010. "Fractals and Hidden Symmetries in DNA," Mathematical Problems in Engineering, Hindawi, vol. 2010, pages 1-31, June.
  • Handle: RePEc:hin:jnlmpe:507056
    DOI: 10.1155/2010/507056
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2010/507056.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2010/507056.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2010/507056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majed S. Balalaa & Anouar Ben Mabrouk & Habiba Abdessalem, 2021. "A Wavelet-Based Method for the Impact of Social Media on the Economic Situation: The Saudi Arabia 2030-Vision Case," Mathematics, MDPI, vol. 9(10), pages 1-21, May.
    2. Monika Khandelwal & Sabha Sheikh & Ranjeet Kumar Rout & Saiyed Umer & Saurav Mallik & Zhongming Zhao, 2022. "Unsupervised Learning for Feature Representation Using Spatial Distribution of Amino Acids in Aldehyde Dehydrogenase (ALDH2) Protein Sequences," Mathematics, MDPI, vol. 10(13), pages 1-20, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:507056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.