IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5013826.html
   My bibliography  Save this article

Comprehensive Numerical Investigations of Unsteady Internal Flows and Cavitation Characteristics in Double-Suction Centrifugal Pump

Author

Listed:
  • Xuelin Tang
  • Mingde Zou
  • Fujun Wang
  • Xiaoqin Li
  • Xiaoyan Shi

Abstract

The RNG k - turbulence model combined with cavitation model was used to simulate unsteady cavitating flows inside a double-suction centrifugal pump under different flow rate conditions based on hexahedral structured grid. The numerical external characteristic performances agree well with the experimental performances. The predicted results show that the turbulence kinetic energy and the turbulence dissipation rate inside the impeller at design flow rate are lower than those at other off-design flow rates, which are caused by various vortexes. Based on frequency-domain analyses in the volute casing, the blade passing frequency is the dominant one of the pressure fluctuations except the vicinity of volute tongue for all operating cases, and the dominant frequency near the volute tongue ranges from 0 to 0.5 times the blade passing frequency for other off-design points, while the blade passing one near the volute tongue is the dominant one of the pressure fluctuations at design point. The increase of flow rate reduces the pressure fluctuations amplitude. For cavitation cases, the blade loading of the middle streamline increases a bit during the initial stage, but, for serious cavitation, the blade loading near the blade inlet reduces to 0 and even negative values, and the serious cavitation bubbles block the blade channels, which results in a sharp drop in pump head. Under noncavitation condition, the predicted power related to the pressure in the impeller channels increases from the inlet to the exit, while, under different cavitation conditions at the design flow rate, these power-transformation distributions in the impeller channels show that these power conversions are affected by the available and the corresponding work in leading regions of the blades increases increases gradually a bit, and then it increases sharply in the middle regions, but it decreases in the blade trailing regions and is greatly influenced by secondary flows.

Suggested Citation

  • Xuelin Tang & Mingde Zou & Fujun Wang & Xiaoqin Li & Xiaoyan Shi, 2017. "Comprehensive Numerical Investigations of Unsteady Internal Flows and Cavitation Characteristics in Double-Suction Centrifugal Pump," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-13, August.
  • Handle: RePEc:hin:jnlmpe:5013826
    DOI: 10.1155/2017/5013826
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2017/5013826.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2017/5013826.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/5013826?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Guangtai & Wang, Shan & Xiao, Yexiang & Liu, Zongku & Li, Helin & Liu, Xiaobing, 2021. "Effect of cavitation on energy conversion characteristics of a multiphase pump," Renewable Energy, Elsevier, vol. 177(C), pages 1308-1320.
    2. Lin, Tong & Li, Xiaojun & Zhu, Zuchao & Xie, Jing & Li, Yi & Yang, Hui, 2021. "Application of enstrophy dissipation to analyze energy loss in a centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 163(C), pages 41-55.
    3. Lin, Tong & Zhu, Zuchao & Li, Xiaojun & Li, Jian & Lin, Yanpi, 2021. "Theoretical, experimental, and numerical methods to predict the best efficiency point of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 31-44.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5013826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.