IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/497161.html
   My bibliography  Save this article

Axisymmetric Consolidation of Unsaturated Soils by Differential Quadrature Method

Author

Listed:
  • Wan-Huan Zhou

Abstract

Axisymmetric consolidation in a sand drain foundation is a common problem in foundation engineering. In unsaturated soils, the excess pore-water and pore-air pressures simultaneously change during the consolidation procedure; and the solutions are not easy to obtain. The present paper uses the differential quadrature method (DQM) for axisymmetric consolidation of unsaturated soils in a sand drain foundation. The radial seepage of sand drain foundation is considered based on the framework of Fredlund’s one-dimensional consolidation theory in unsaturated soils. With the use of Darcy’s law and Fick’s law, the polar governing equations of excess pore-air and pore-water pressures of axisymmetric consolidation are derived. By using DQM, the two governing equations are transformed into two sets of ordinary differential equations. Then the solutions of excess pore-water and pore-air pressures can be obtained by Rong-Kutta method. The DQM solution can be used to deal with the case of nonuniform initial pore-air and pore-water distributions. Finally, case studies are presented to investigate the behavior of axisymmetric consolidation of unsaturated soils. The convergence analysis and average degree of consolidation, the settlements in radial and vertical direction, and the effects of different initial excess pore pressure distributions are presented, and discussed in this paper.

Suggested Citation

  • Wan-Huan Zhou, 2013. "Axisymmetric Consolidation of Unsaturated Soils by Differential Quadrature Method," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-14, December.
  • Handle: RePEc:hin:jnlmpe:497161
    DOI: 10.1155/2013/497161
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/497161.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/497161.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/497161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:497161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.