IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/4935792.html
   My bibliography  Save this article

Exploiting Product Related Review Features for Fake Review Detection

Author

Listed:
  • Chengai Sun
  • Qiaolin Du
  • Gang Tian

Abstract

Product reviews are now widely used by individuals for making their decisions. However, due to the purpose of profit, reviewers game the system by posting fake reviews for promoting or demoting the target products. In the past few years, fake review detection has attracted significant attention from both the industrial organizations and academic communities. However, the issue remains to be a challenging problem due to lacking of labelling materials for supervised learning and evaluation. Current works made many attempts to address this problem from the angles of reviewer and review. However, there has been little discussion about the product related review features which is the main focus of our method. This paper proposes a novel convolutional neural network model to integrate the product related review features through a product word composition model. To reduce overfitting and high variance, a bagging model is introduced to bag the neural network model with two efficient classifiers. Experiments on the real-life Amazon review dataset demonstrate the effectiveness of the proposed approach.

Suggested Citation

  • Chengai Sun & Qiaolin Du & Gang Tian, 2016. "Exploiting Product Related Review Features for Fake Review Detection," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-7, August.
  • Handle: RePEc:hin:jnlmpe:4935792
    DOI: 10.1155/2016/4935792
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2016/4935792.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2016/4935792.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/4935792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hajek, Petr & Sahut, Jean-Michel, 2022. "Mining behavioural and sentiment-dependent linguistic patterns from restaurant reviews for fake review detection," Technological Forecasting and Social Change, Elsevier, vol. 177(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4935792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.