IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/4896854.html
   My bibliography  Save this article

Short-Term Wind Speed Forecasting Using the Data Processing Approach and the Support Vector Machine Model Optimized by the Improved Cuckoo Search Parameter Estimation Algorithm

Author

Listed:
  • Chen Wang
  • Jie Wu
  • Jianzhou Wang
  • Zhongjin Hu

Abstract

Power systems could be at risk when the power-grid collapse accident occurs. As a clean and renewable resource, wind energy plays an increasingly vital role in reducing air pollution and wind power generation becomes an important way to produce electrical power. Therefore, accurate wind power and wind speed forecasting are in need. In this research, a novel short-term wind speed forecasting portfolio has been proposed using the following three procedures: (I) data preprocessing: apart from the regular normalization preprocessing, the data are preprocessed through empirical model decomposition (EMD), which reduces the effect of noise on the wind speed data; (II) artificially intelligent parameter optimization introduction: the unknown parameters in the support vector machine (SVM) model are optimized by the cuckoo search (CS) algorithm; (III) parameter optimization approach modification: an improved parameter optimization approach, called the SDCS model, based on the CS algorithm and the steepest descent (SD) method is proposed. The comparison results show that the simple and effective portfolio EMD-SDCS-SVM produces promising predictions and has better performance than the individual forecasting components, with very small root mean squared errors and mean absolute percentage errors.

Suggested Citation

  • Chen Wang & Jie Wu & Jianzhou Wang & Zhongjin Hu, 2016. "Short-Term Wind Speed Forecasting Using the Data Processing Approach and the Support Vector Machine Model Optimized by the Improved Cuckoo Search Parameter Estimation Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-17, July.
  • Handle: RePEc:hin:jnlmpe:4896854
    DOI: 10.1155/2016/4896854
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2016/4896854.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2016/4896854.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/4896854?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Llinet Benavides Cesar & Rodrigo Amaro e Silva & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira, 2022. "Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates," Energies, MDPI, vol. 15(12), pages 1-23, June.
    2. Juan D. Velásquez & Lorena Cadavid & Carlos J. Franco, 2023. "Intelligence Techniques in Sustainable Energy: Analysis of a Decade of Advances," Energies, MDPI, vol. 16(19), pages 1-45, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4896854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.