Author
Listed:
- Xiaomei Xu
- Zhirui Ye
- Jin Li
- Chao Wang
Abstract
This study proposes an improved model and algorithm for the large-scale multi-depot vehicle scheduling problem (MDVSP) with departure-duration restrictions. In this study, the time-space network is applied to model the large-scale MDVSP. Considering that crews usually change shifts in the depot, departure-duration restrictions are added to the classic set-partitioning model to ensure that buses return to the depot when crews reach their working time limits. By embedding a preliminary exploring tactic to the shortest path faster algorithm (SPFA), researchers developed an improved large neighborhood search (LNS) algorithm to solve large-scale instances of MDVSP with departure-duration restrictions. The proposed methodology is applied to a real-life case in China and several test instances. The results show that the improved LNS algorithm can achieve very good performance in computational efficiency without deteriorating solution quality, which is important for large-scale systems. More specifically, the total cost of the improved LNS algorithm is approximately equal to branch-and-price, but the computational time is much shorter in the case study. For test instances with different number of timetabled trips (500, 1000, 1500, and 2000), the Quality Gap ( QG ) is very small, approximately 0.35%, 0.38%, 0.63%, and 0.93%, while the Efficiency Ratio ( ER ) reaches up to 2.89, 2.98, 3.65, and 3.79, respectively.
Suggested Citation
Xiaomei Xu & Zhirui Ye & Jin Li & Chao Wang, 2018.
"Solving a Large-Scale Multi-Depot Vehicle Scheduling Problem in Urban Bus Systems,"
Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-13, August.
Handle:
RePEc:hin:jnlmpe:4868906
DOI: 10.1155/2018/4868906
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4868906. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.