Author
Listed:
- Y. Hui
- G. De Pietro
- G. Giunta
- S. Belouettar
- H. Hu
- E. Carrera
- A. Pagani
Abstract
The formulation of a family of advanced one-dimensional finite elements for the geometrically nonlinear static analysis of beam-like structures is presented in this paper. The kinematic field is axiomatically assumed along the thickness direction via a Unified Formulation (UF). The approximation order of the displacement field along the thickness is a free parameter that leads to several higher-order beam elements accounting for shear deformation and local cross-sectional warping. The number of nodes per element is also a free parameter. The tangent stiffness matrix of the elements is obtained via the Principle of Virtual Displacements. A total Lagrangian approach is used and Newton-Raphson method is employed in order to solve the nonlinear governing equations. Locking phenomena are tackled by means of a Mixed Interpolation of Tensorial Components (MITC), which can also significantly enhance the convergence performance of the proposed elements. Numerical investigations for large displacements, large rotations, and small strains analysis of beam-like structures for different boundary conditions and slenderness ratios are carried out, showing that UF-based higher-order beam theories can lead to a more efficient prediction of the displacement and stress fields, when compared to two-dimensional finite element solutions.
Suggested Citation
Y. Hui & G. De Pietro & G. Giunta & S. Belouettar & H. Hu & E. Carrera & A. Pagani, 2018.
"Geometrically Nonlinear Analysis of Beam Structures via Hierarchical One-Dimensional Finite Elements,"
Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-22, November.
Handle:
RePEc:hin:jnlmpe:4821385
DOI: 10.1155/2018/4821385
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4821385. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.