IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/4817565.html
   My bibliography  Save this article

Solubility Optimal System for Supercritical Fluid Extraction Based on a New Nonlinear Temperature-Pressure Decoupling Model Constructed with Unequal-Interval Grey Optimal Models and Peng-Robinson Models

Author

Listed:
  • Binglin Li
  • Wen You

Abstract

This paper presents a new solubility optimal system to improve the efficiency of supercritical fluid extraction (SFE). The major contribution is a nonlinear temperature-pressure decoupling model constructed with unequal-interval grey optimal models (UEIGOMs) and Peng-Robinson models (PRMs). The linear parts of temperature and pressure process can be constructed with UEIGOM, respectively. The nonlinear parts of temperature and pressure process can be described by PRMs, respectively. The whole nonlinear model cannot be input-output decoupled resulting from the singularity of decoupling matrix for PRM. This problem on input-output nondecoupling can be transformed to the problem on disturbance decoupling for a class of MIMO nonlinear systems. Therefore, the whole nonlinear coupling model can be disturbance decoupled. Furthermore, solubility optimal method is presented in the paper; it can calculate the optimal pressure according to the given temperature, namely, optimal working points, to maximize solubility for SFE process. The feasibility, effectiveness, and practicality of the proposed nonlinear temperature-pressure decoupling model constructed with UEIGOMs and PRMs are verified by SFE experiments in biphenyl. Experiments using the designed solubility optimal system are carried out to demonstrate the effectiveness in control scheme, simplicity in structure, and flexibility in implementation for the proposed solubility optimal system based on a new nonlinear temperature-pressure coupling model constructed with UEIGOMs and PRMs.

Suggested Citation

  • Binglin Li & Wen You, 2018. "Solubility Optimal System for Supercritical Fluid Extraction Based on a New Nonlinear Temperature-Pressure Decoupling Model Constructed with Unequal-Interval Grey Optimal Models and Peng-Robinson Mode," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-11, April.
  • Handle: RePEc:hin:jnlmpe:4817565
    DOI: 10.1155/2018/4817565
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2018/4817565.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2018/4817565.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/4817565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4817565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.