Author
Abstract
The purpose of this paper is to consider the interaction between many parallel dislocations and a wedge-shaped crack and their collective response to the external applied generalized stress in one-dimensional hexagonal piezoelectric quasicrystal, employing the complex variable function theory and the conformal transformation method; the problem for the crack is reduced to the solution of singular integral equations, which can be further reduced to solving Riemann–Hilbert boundary value problems. The analytical solutions of the generalized stress field are obtained. The dislocations are subjected to the phonon field line force, phason field line force, and line charge at the core. The positions of the dislocations are arbitrary, but the dislocation distribution is additive. The dislocation is not only subjected to the external stress and the internal stress generated by the crack, but also to the force exerted on it by other dislocations. The closed-form solutions are obtained for field intensity factors and the image force on a screw dislocation in the presence of a wedge-shaped crack and a collection of other dislocations. Numerical examples are provided to show the effects of wedge angle, dislocation position, dislocation distribution containing symmetric configurations and dislocation quantities on the field intensity factors, energy release rate, and image force acting on the dislocation. The principal new physical results obtained here are (1) the phonon stress, phason stress, and electric displacement singularity occur at the crack tip and dislocations cores, (2) the increasing number of dislocations always accelerates the crack propagation, (3) the effect of wedge angle on crack propagation is related to the distribution of dislocations, and (4) the results of the image force on the dislocation indicate that the dislocations can either be attracted or rejected and reach stable positions eventually.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4797413. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.