IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/4657091.html
   My bibliography  Save this article

Simulation of Video Image Fault Tolerant Coding Transmission in Digital Multimedia

Author

Listed:
  • Feng Li
  • Hengchang Jing

Abstract

In order to effectively improve the quality of video image transmission, this paper proposes a method of digital multimedia video image coding. The transmission of digital multimedia video image fault-tolerant coding requires sparse decomposition of a digital multimedia video image to obtain the linear form of the image and complete the transmission of video image fault-tolerant coding. The traditional method of fault-tolerant coding is based on human visual characteristics but ignores the linear form of the digital multimedia video image, which leads to the unsatisfactory effect of coding and transmission. In this paper, a fault-tolerant coding method based on wavelet transform and vector quantization is proposed to decompose and reconstruct digital multimedia video images. The smoothness of wavelet transform can remove visual redundancy; the decomposed image is vector quantized. The mean square deviation method and the similar scalar optimal quantization method are used to select and calculate the image vector, construct the over complete database of a digital multimedia video image, and normalize it; the digital multimedia video image is thinly decomposed by asymmetric atoms, and a linear representation of the image is obtained. According to the above-given operations, we can master the distribution range and law of pixels and realize fault-tolerant coding. The experimental results show that when the number of iterations is 15, the CR index is the same, PSNR increases by 8.7%, coding is 23.7% faster and decoding is 15% faster. Conclusion. The proposed method can not only improve the speed of fault-tolerant coding but also improve the quality of video image transmission.

Suggested Citation

  • Feng Li & Hengchang Jing, 2022. "Simulation of Video Image Fault Tolerant Coding Transmission in Digital Multimedia," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-7, September.
  • Handle: RePEc:hin:jnlmpe:4657091
    DOI: 10.1155/2022/4657091
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/4657091.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/4657091.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/4657091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4657091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.