Author
Listed:
- Yanming Fu
- Zhuohang Li
- Chiwen Qu
- Haiqiang Chen
Abstract
Atom search optimization algorithm has good searching ability and has been successfully applied to calculate hydrogeological parameters and groundwater dispersion coefficient. Since the atom search optimization algorithm is only based on the atom force motion model in molecular dynamics, it has some shortcomings such as slow search speed and low precision during the later stage of iteration. A modified atom search optimization based on the immunologic mechanism and reinforcement learning is proposed to overcome the abovementioned shortcomings in this paper. The proposed algorithm introduces a vaccine operator to better utilize the dominant position in the current atom population so that the speed, accuracy, and domain search ability of the atom search optimization algorithm can be strengthened. The reinforcement learning operator is applied to dynamically adjust the vaccination probability to balance the global exploration ability and local exploitation ability. The test results of 21 benchmark functions confirm that the performance of the proposed algorithm is superior to seven contrast algorithms in search accuracy, convergence speed, and robustness. The proposed algorithm is used to optimize the permutation flow shop scheduling problem. The experimental results indicate that the proposed algorithm can achieve better optimization results than the seven comparative algorithms, so the proposed algorithm has good practical application value.
Suggested Citation
Yanming Fu & Zhuohang Li & Chiwen Qu & Haiqiang Chen, 2020.
"Modified Atom Search Optimization Based on Immunologic Mechanism and Reinforcement Learning,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-22, January.
Handle:
RePEc:hin:jnlmpe:4568906
DOI: 10.1155/2020/4568906
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4568906. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.