IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/456730.html
   My bibliography  Save this article

On the numerical solution of the one-dimensional convection-diffusion equation

Author

Listed:
  • Mehdi Dehghan

Abstract

The numerical solution of convection-diffusion transport problems arises in many important applications in science and engineering. These problems occur in many applications such as in the transport of air and ground water pollutants, oil reservoir flow, in the modeling of semiconductors, and so forth. This paper describes several finite difference schemes for solving the one-dimensional convection-diffusion equation with constant coefficients. In this research the use of modified equivalent partial differential equation (MEPDE) as a means of estimating the order of accuracy of a given finite difference technique is emphasized. This approach can unify the deduction of arbitrary techniques for the numerical solution of convection-diffusion equation. It is also used to develop new methods of high accuracy. This approach allows simple comparison of the errors associated with the partial differential equation. Various difference approximations are derived for the one-dimensional constant coefficient convection-diffusion equation. The results of a numerical experiment are provided, to verify the efficiency of the designed new algorithms. The paper ends with a concluding remark.

Suggested Citation

  • Mehdi Dehghan, 2005. "On the numerical solution of the one-dimensional convection-diffusion equation," Mathematical Problems in Engineering, Hindawi, vol. 2005, pages 1-14, January.
  • Handle: RePEc:hin:jnlmpe:456730
    DOI: 10.1155/MPE.2005.61
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2005/456730.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2005/456730.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/MPE.2005.61?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arafat Hussain & Zhoushun Zheng & Eyaya Fekadie Anley, 2020. "Numerical Analysis of Convection–Diffusion Using a Modified Upwind Approach in the Finite Volume Method," Mathematics, MDPI, vol. 8(11), pages 1-21, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:456730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.