IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/4535734.html
   My bibliography  Save this article

Simulation Study on Coverage Path Planning of Autonomous Tasks in Hilly Farmland Based on Energy Consumption Model

Author

Listed:
  • Mengwei Shen
  • Suzhen Wang
  • Shuang Wang
  • Yan Su

Abstract

The hilly farmland in China is characterized by small farmland areas and dense farmland distribution, and the working environment is three-dimensional topographic farmland, so the working conditions in the field are relatively complex. In this working environment, the coverage path planning technique of a farmland autonomous task is harder than that of 2D farmland autonomous task. Generally, the path planning problem of 2D farmland is to construct the path cost model to realize the planning of agricultural machinery driving route, while for the path planning problem of three-dimensional terrain farmland in the hilly region, this paper proposes a covering path planning scheme that meets the requirements of autonomous work. Based on the energy consumption model, the scheme searches the optimal driving angle of agricultural machinery, prioritizes solutions to the problem of covering path planning within the scattered fields in the working area, and then searches through the genetic algorithm for the optimal order of traversing the paths of each field to complete the coverage path planning in the working area. On the one hand, the scheme optimizes the planning route in the fields from the angle of optimal energy consumption; on the other hand, through the genetic algorithm, the fields are connected in an orderly manner, which solves the comprehensive problems brought by the unique agricultural environment and farming system in China’s hilly areas to the agricultural machinery operation. The algorithm program is developed according to the research content, and a series of simulation experiments are carried out based on the program using actual farmland data and agricultural machinery parameters. The results show that the planned path obtained at the cost of energy consumption has a total energy consumption of 4771897.17J, which is 17.4% less energy consumption than the optimal path found by the path cost search; the optimization effect is evident.

Suggested Citation

  • Mengwei Shen & Suzhen Wang & Shuang Wang & Yan Su, 2020. "Simulation Study on Coverage Path Planning of Autonomous Tasks in Hilly Farmland Based on Energy Consumption Model," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-15, August.
  • Handle: RePEc:hin:jnlmpe:4535734
    DOI: 10.1155/2020/4535734
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/4535734.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/4535734.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/4535734?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tyler Parsons & Fattah Hanafi Sheikhha & Omid Ahmadi Khiyavi & Jaho Seo & Wongun Kim & Sangdae Lee, 2022. "Optimal Path Generation with Obstacle Avoidance and Subfield Connection for an Autonomous Tractor," Agriculture, MDPI, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4535734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.