Author
Listed:
- Jin Wang
- Qilong Xue
- Baolin Liu
- Fangtao Li
- Zonghu Zhang
Abstract
Rotating plane flow distributing pairs have been widely used in engineering. It is very important to reduce the frictional resistance between the pairs to improve the sensitivity and prolong service life. In this paper, the traditional rotating plane flow pair is improved, and the boss is introduced to keep the rotor and the stator in incomplete contact, and then a gap is formed between the flow pairs. The relationship between the pressure distribution and the friction resistance of the flow pairs is established. The theoretical mathematical model of the fluid movement between the gaps of the structure is built. Given the complexity of model analysis, the numerical analysis method is used to analyze the fluid motion in the structure. The height of the boss is proved to be the most important parameter of the structure, the increase of the boss’s height causes the pressure between the flow pairs to increase, and the pressure difference between regions gradually decreases, so the friction between the flow pairs will gradually decrease until reaching a stable value. The change of the boss’s diameter has little influence on the pressure distribution of the clearance, but as the diameter increases, the friction between the flow pairs will increase linearly. Once the opening width of the waist hole on the upper rotor is smaller than the radius of the discharge hole on the lower stator, the smaller the width, the higher the pressure, but when the opening width is larger than the radius of the discharge holes, the change of the width has no obvious influence on the pressure distribution and the friction.
Suggested Citation
Jin Wang & Qilong Xue & Baolin Liu & Fangtao Li & Zonghu Zhang, 2020.
"Numerical Study on the Characteristics and Effects of Gap Flow in Two Parallel Rotating Disks,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-14, May.
Handle:
RePEc:hin:jnlmpe:4514936
DOI: 10.1155/2020/4514936
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4514936. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.